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ABSTRACT

The performance of parallel Monte Carlo transport calculations which use both spatial and
particle parallelism is increased by dynamically assigning processors to the most worked domains.
Since the particle work load varies over the course of the simulation, this algorithm determines
each  cycle  if  dynamic  load  balancing  would  speed  up  the  calculation.   If  load  balancing  is
required, a small number of particle communications are initiated in order to achieve load balance.
This  method  has  decreased  the  parallel  run  time  by  more  than  a  factor  of  three  for  certain
criticality calculations.
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1  INTRODUCTION

Monte Carlo particle transport calculations can be very time consuming, especially for prob-
lems which require large particle counts or problem geometries with many zones.  Calculations
of this magnitude are normally run in parallel, since a single processor does not have enough
memory to store all of the particles and/or zones.  The approach employed in the parallel code
MERCURY [1], [2] is to spatially decompose the mesh into domains, and assign individual pro-
cessors to work on specific domains.  This method, known as domain decomposition, is a form of
spatial parallelism.  In contrast, the easiest way to parallelize a Monte Carlo transport code is to
store the geometry information redundantly on each of the processors, and assign each processor
work on a different set of particles.  This method is termed domain replication, which is a form
of particle parallelism.  In many cases, problems are so large that particle parallelism alone is not
sufficient.  For these problems, a combination of both spatial and particle parallelism is em-
ployed to achieve a scalable parallel solution.

Since particles often migrate in space and time between different regions of a problem, it is a
natural consequence of domain decomposition that not all spatial domains will require the same
amount of computational work.  Hence, the calculation is load imbalanced.  In many applica-
tions, one portion of the calculation (cycle, iteration, etc.) must be completed by all processors
before the next phase can commence.  If one processor has more work than any of the other pro-
cessors,  the less-loaded processors must wait for the most worked processor to complete its
work.

In an attempt to reduce this form of particle-induced load imbalance, we have developed a
strategy which allows the number of processors assigned to a domain to vary in accordance with
the amount of work on that domain.  The particles that are located in a given spatial domain are
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then divided evenly among the number of  processors assigned to work on that domain, which is
termed the domain's replication level.

This paper describes a dynamic load balancing algorithm which minimizes the computation-
al work of the most loaded processor by off loading some of the work to other processors.  The
paper is organized as follows.  The parallel architecture of the MERCURY Monte Carlo particle
transport code is described in Section 2.  This is followed by an illustration of the need for some
form of load balancing in spatially-decomposed parallel calculations in Section 3.  A discussion
of the optimal number of processors that should be assigned to domains is found in Section 4.
The various algorithms used to implement dynamic load balancing are described in Section 5,
while the conclusions are given in Section 6.

2 THE ARCHITECTURE OF THE PARALLEL MONTE CARLO CODE

The code MERCURY [2] supports two modes of parallelism: spatial parallelism via domain
decomposition, and particle parallelism via domain replication [1].  These methods may be used
individually or in combination.  Spatial parallelism involves spatial decomposition of the prob-
lem geometry into domains and the assignment of each processor to work on a different (set of)
domain(s).  This method is shown schematically in Figure 1, which represents a 4-way spatial
decomposition of a 2-D block unstructured mesh.  The red arrows indicate communication
events, which are required when particles track to a facet which lies on an interprocessor
boundary.

In particle parallelism, the problem geometry is replicated on each processor, and the parti-
cles are divided among each of the processors.  Figure 2 shows the same 2-D mesh with 2-way
domain replicated .  The blue, curved arrows represent the collective “summing” communication
events that are required to obtain final results from the per-processor partial results.

These methods can also be used in combination, where the problem is spatially decomposed
into domains, and then within a domain, the particle load is divided among multiple processors.
Each domain can be assigned a different number of processors to work on (replication level), de-
pending on the particle work load.  In Figure 3, the central domain is assigned 3 processors, since
it has the highest work load.  The left and right domains each have a replication level of 2, since
they are the next highest loaded domains, while the top domain is not replicated, since it has the
lightest particle work load.

3 THE NECESSITY FOR DYNAMIC LOAD BALANCING

The requirement for some form of active management of the particle work load in a spatial-
ly-decomposed parallel transport calculation is illustrated in Figure 4.  Figure 4a shows the ge-
ometry of the double-density Godiva supercritical system, a highly-enriched uranium sphere of
radius r = 8.7407  cm and density of  = 37.48  g/cm3.  Particles are source in at the origin and
settle calculation is performed to find   eigenvalue of the system.  This calculation is run on a
2-D mesh with 4-way spatial parallelism: a 2 by 2 spatial decomposition, as indicated by the
black domain boundary lines in Figure 4b and 4c.

Figures 4b and 4c compare two different ways of distributing 16 processors to 4 spatial do-
mains.  The first approach (Figure 4b) is to uniformly assign 4 processors to each domain.  This
configuration does not take into account the actual work load of the domain, so it is less efficient
(60% parallel efficiency) than an approach that considers the domain work load when deciding
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Figure 1.  Spatial parallelism in MERCURY is achieved via domain decomposition
(spatial partitioning) of the problem geometry.  Particles must be transferred to ad-
jacent domains when they reach a domain boundary.  The communication of parti-
cle buffers between adjacent spatial domains is indicated via the red arrows.

Figure 2.  Particle parallelism in MERCURY is achieved via domain replication
(multiple copies) of the problem geometry.  The particle workload is distributed
across the copies of the domain.  The summing communication of partial results is
indicated by the blue, curved arrows.
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how many processors should be assigned to each domain.  The second configuration (Figure 4c)
assigns processors to domains based on the work load of the domain.  As a result, the parallel ef-
ficiency of this calculation is much higher (91%).

As used here, the parallel efficiency is defined to be the average computational work over all
processors, divided by the maximum computational work on any  processor:

 =
Wave

Wmax

=
 1

Np
∑p=1

Np [ Wp ]

maxp = 1
Np [Wp ]

                                     (1)

where   is the parallel efficiency, Wp  is the computational work associated with processor
p , Np  is the number of processors, Wave  is the computational work averaged over all of the

processors and Wmax  is the computational work on the most loaded processor.

Note that the parallel efficiency is inversely proportional to the maximum work load of any
processor, so having even a single processor that is over worked can really slow down the calcu-
lation.  Since the calculation wall time is inversely proportional to the parallel efficiency, the
goal of load balancing is to maximize the parallel efficiency and  minimize the wall time to run
the problem.  The parallel efficiency of the calculation changes as the problem evolves over time,
or as the number of processors assigned to work on a domain changes.

What is the reason for this large disparity in parallel efficiencies as one changes the replica-
tion level of the domains?  Figure 5 illustrates the dynamic nature of the particle work load as the
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Figure 3.  Diagram illustrating the combination of spatial parallelism (domain decom-
position) and particle parallelism (domain replication).  The central domain has 3 pro-
cessors assigned to it since it has the largest computational work load.
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problem evolves over time.  Time increases to the right, and then down, in the figure.  These are
pseudo color plots of the particle number density per zone at 6 cycles during the calculation.  Ini-
tially all of the work is on the lower-left domain (Domain 0), since the particles were sourced in
at the origin.  As time evolves, the particles migrate to the other domains, first to the upper-left
(Domain 2) and lower-right (Domain 1) domains, and then to the upper-right domain (Domain
3).  This explains why the static replication shown in Figure 4c (7, 2, 5, 2) out performs the pro-
cessor assignment shown in Figure 4b (4, 4, 4, 4).

4 THE OPTIMAL NUMBER OF PROCESSORS PER DOMAIN

The figures in the previous section clearly show that the computational work load in a paral-
lel Monte Carlo transport calculation changes over the course of the problem.  This implies a
change in the work load of any given domain.  As a result, the number of processors assigned to
work on a domain (the replication level) should respond according to the work load of that do-
main.

Figure 6 is a graph showing the dynamic nature of the work load from cycle to cycle in the
double-density Godiva problem.  The calculation was run with 4 domains on 16 processors.  The
calculation begins with a uniform assignment of processors to domains: each domain has 4 pro-
cessors working on its particles.  After the first cycle, the code responds to the large number of
(sourced) particles in Domain 0 by assigning 13 processors to it (3 processors are reassigned
from each of Domains 1,2 and 3).  As time evolves, the work load per domain changes, leading
the code to redistribute the number of processors working on each domain.  At the end of the
simulation, there are 6 processors working on Domains 0 and 2, while 2 processors are working
on Domains 1 and 3.
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                   (a)                                            (b)                                           (c)

      Problem Geometry                       60% efficient                          91% efficient

Figure 4.   The double-density Godiva criticality problem: (a) the problem geometry, (b) a constant, uniform
assignment of processors to domains with 4 processors assigned to each domain has a parallel efficiency of
only 60% efficient, (c) a dynamic, varying assignment of processors to domains based on the work per
domain is 91% efficient.  Figures 4b and 4c are pseudo color plots of particle number density, where redder
areas represent more computational work.
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Figure 5.  Pseudocolor plot of particle number density at several times during the simulation.  Redder areas
indicate more computational work.  Clearly, there is an uneven workload over time.  The black lines indicate
the domain boundaries.

Figure 6.  Variation of the replication level (number of assigned processors) of each domain as a function of
time.
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The computational work performed by each processor Wp  is approximately the number
of particle segments that occurred on each processor during the previous cycle.  A segment is
defined to be one of the following particle events:

● Facet Crossing
● Collision
● Thermalization
● Census
● Energy-group Boundary Crossing

The computational work performed on each processor, represented by 1 integer per proces-
sor, is then globally communicated, such that each processor knows the work load of all other
processors.  Since the domain that each processor is currently assigned to is known, it is straight-
forward to determine the most worked domain.  The code then predicts what the parallel efficien-
cy would be if  a redistribution of processors was to take place at the current time.  This predic-
tion is used in to determine when to perform a dynamic load balance operation.

5 DESCRIPTION OF THE LOAD BALANCING ALGORITHMS

5.1 The Algorithm for Determining When to Load Balance

The algorithm is designed to perform a dynamic load balance operation only if it will result
in a faster overall calculation.  This criterion can be checked inexpensively each cycle.  The code
calculates the current parallel efficiency C  , as well as what the parallel efficiency would be if

the code was to redistribute processors right now LB  .  The ratio of these two efficiencies de-
fines the speedup factor S  :

S =
C

LB

                                                               (2)

The wall time required to execute the previous physics cycle Phys   and the time required to
perform the load balance operation itself (the communication cost of distributing the particles to
other processors, LB ) define the predicted wall time for the next cycle '  :

' = Phys⋅S  LB                                                    (3a)

 = Phys                                                            (3b)

The algorithm used to determine if a dynamic load balancing operation is worthwhile
compares the predicted wall time of the next cycle run with and without a load balance operation:
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if  ' 0.9⋅
{

 DynamicLoadBalance();                         (4)
}
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5.2 The Domain Replication Level Algorithm

This section describes the algorithm which is used to determine the number of processors
that should be assigned to each domain.  The goal is to minimize the particle work load on the
most worked processor.  The data input to, and quantities calculated by, this algorithm are:

This algorithm is similar to what a manger of a company might do when assigning em-
ployees to different projects.  In this scenario, NP  is equivalent to the total number of employ-
ees, ND  is the number of projects, Wi  is the total work for project i, and Pi  is the number of
employees working on project i.  To start, each project is assigned 1 employee.  The process then
continues in an iterative manner, by finding the project with the most work per employee and as-
signing it another employee, until there are no more employees available.

A straightforward algorithm can be used to accomplish this task:

A simple proof by mathematical deduction on Np  shows that this algorithm minimizes

max
i=1

ND  Wi

Pi
  .
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Input:
i. NP  is the total number of processors
ii. ND  is the total number of domains, where NP ≥ ND

iii. Wi  is the computational work associated with domain i, where i = 1, , ND

Output:
i. Pi  is the number of processors assigned to domain i, subject to the following con-

straints:
● Pi ≥ 1  for i = 1, , ND :  Each domain is assigned at least one processor.

● ∑
i=1

ND

Pi = NP
:  The sum of all processors assigned to all domains must equal the

  total number of processors.

● max
i=1

ND Wi

Pi
  is minimized:  The maximum work per processor is minimized.

(1) Initialize Pi = 1  for i = 1, , ND

(2) for ( i = ND ; i  NP ; i ++)
{

(c) Find m  such that  Wm

Pm
≥ Wk

Pk
  for all k = 1, , ND

(d) Increment Pm :  Pm ++
}
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5.3 Communication Algorithm

Once the per-domain particle work load is used to determine the optimal number of proces-
sors to assign to each domain, particles must be communicated between processors in order to
move from the current, load-imbalanced state, to the desired load-balanced state.  This is accom-
plished by finding the changes in particle count that must be communicated, followed by sending
that small set of changes in order to achieve load balance.  

The operation of this algorithm is illustrated in Figure 7.  The input required by the algo-
rithm is the current state of (a) the number of processors assigned to work on each domain, (b)
the number of particles on each processor, and (c) the number of processors that should be work-
ing on each domain after load balancing.  The algorithm then shuffles processors and communi-
cates particles in order to achieve a load balanced state (see Figure 7, Step 4).

The Particle-Communication Load Balancing Algorithm

An easy way to think about this algorithm is to imagine Pd  stacks of quarters, where each
stack of quarters can be a different height.  Say the i-th stack of quarters has Ci  quarters in it.
The goal of the algorithm is find a small set of transfers of quarters from one stack to another
such that, in the end, each stack of quarters is about the same height.  The general idea is to move
quarters from the tallest stack to the shortest stack, such that after the move, one of the stacks
will have the average number of quarters in it.  Once a stack of quarters has the average number
of quarters in it, it no longer participates in the transfers, since it already has the target number of
quarters.

In the case of the MERCURY load balance algorithm, the number of stacks of quarters cor-
responds to the number of processors, while the height of each stack of quarters corresponds the
number of particles on that processor.  Particles must be communicated between processors such
that each processor ends up with about the same number of particles on it after the load balancing
operation completes.

The input data required by, and output data produced by, the particle communication algo-
rithm is as follows:
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Input:
i. Pd  is the number of processors working on domain d
ii. Ci  is the number of particles on processor i, where i = 1, , Pd

Output:
i. NE  is the number of communications needed to achieve load balance (the number of

edges in communication graph), where NE  Pd

ii. COMMj.from is the rank of the sending processor for the jth communication.
iii.COMMj.to is the rank of the receiving processor for the jth communication.
iv. COMMj.amount is the number of particles to be sent for the jth communication.
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Figure 7.  A graphical representation of the particle communication for the dynamic load balancing
algorithm: (a) the legend that describes the various steps of the algorithm, (b) the first and second steps of the
algorithm.

This is the legend for the diagrams in this figure.  The length of the particle 
bar indicates the number of particles on each processor.  Particles within a 
domain must remain within that domain after load balancing.
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Domain 2 Domain 3
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Figure 7 (continued).  A graphical representation of the particle communication for the dynamic load
balancing algorithm:  (c) the third and fourth steps of the algorithm, (b) the fifth step of the algorithm.

Step 3.   After the code determines 
which processors are assigned to 
each domain, each domain can bal-
ance its particle load.

Step 4.  This is the communication 
necessary to achieve load balance 
within each domain.
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Domain 2 Domain 3

Domain 0 Domain 1

Domain 2 Domain 3

Step 5.   The end result of load bal-
ancing: The number of processors 
per domain has been changed so that 
the maximum number of particles 
per processor in minimized.
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Once the output communication graph has been executed, the number of particles per pro-
cessor is the same for all processors assigned to work on that domain, modulo a few particles if

there is a remainder from the division:  Cave =  1
Pd

∑i=1

Pd

Ci  .

The particle-communication load balancing algorithm is as follows:

This is a very natural load balancing algorithm.  The number of particles Ci  on every
processor is either over the average Cave , or under the average Cave .  If a processor's particle
count Ci  already equals Cave , then it does not need to participate in load balancing, since it
already has the desired number of particles.  If Ci  is over the average, then the processor sends
particles to other processors, and its particle count is reduced to Cave .  In contrast, if Ci  is
under the average, then the particle receives  particles from other processors, increased its
particle count to Cave .  As a result, a processor is either sending or receiving particles, but not
both in the same cycle.

The goal is that all processors will end up with the average number of particles per proces-
sor.  At each iteration of the loop, the particles are sent from the processor with the most particles
to the processor with the least particles, and one of those processors will end up with Cave  parti-
cles.  Each iteration of the loop results in one more processor having Cave  particles, so the loop
can be iterated at most Pd  times.  The result is a very sparse communication graph that is used
to achieve load balance, which is important since communication can be expensive on modern,
parallel computing platforms.
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(1) Initialize NE = 0
(2) while (not load balanced, i.e. maxCi1.05∗Cave )

{
(a) Find imin such that Cimin

≤ Ci  for all i = 1, , Pd

(b) Find imax  such that Cimax
≥ Ci  for all i = 1, , Pd

(c) Send particles from processor  imax to processor imin such that either Cimin
 or Cimax

becomes Cave   (Send particles from the processor with the most particles to the
processor with the least particles, bringing one of them to the average number of
particles).

(d) COMMNE
.from =  imax

(e) COMMNE
.to =  imin

(f) COMMNE
.amount = min( Cimax

− Cave , Cave − Cimin
)

(g) Cimax
 -= COMMNE

.amount
(h) Cimin

 += COMMNE
.amount

(i) Increment the number of edges:  NE ++
}
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6 CONCLUSION

The particle work load in a spatially-decomposed, parallel Monte Carlo transport calculation
has been shown to be dynamic and non-uniform across domains.  This particle-induced load im-
balance results in a reduction of the computational efficiency of such calculations.  In an effort to
overcome this shortcoming, the MERCURY Monte Carlo code has been extended to include a
dynamic particle load balancing algorithm.  The method uses a variable number of processors
that are assigned to each domain (replication level) in an attempt to balance the number of parti-
cles per processor.  The algorithm includes logic that determines the optimal number of proces-
sors per domain, when to perform a dynamic redistribution of processors to domains, as well as
how to perform the load balancing particle communications between processors.  This method
has been applied to a criticality calculation, where it has yielded more than a three-fold increase
in the parallel efficiency.
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